
MSc Audiology Cohort 4 Presentation on 7 May 2021

## COMORBIDITY PROFILING OF CHILDREN WITH AUDITORY PROCESSING DISORDER (APD) IN SINGAPORE

Vivian Cheung (A0211046X) e0488959@u.nus.edu Supervised by: A/Prof Jenny Loo Hooi Yin



# Today's Agenda

- 1) Background
- 2) About the study
- 3) Methods
- 4) Results
- 5) Discussion



# Background

- Brain-related hearing difficulty
  - Incapability of the central nervous
    - system to utilize auditory information
      - Impairment of perceiving both non-speech sounds and speech sounds
- Deficits in peripheral hearing, language or higher-order cognition



(AP):

- E.g. a school-aged child with APD may experience difficulties in:
- 1) Spelling
- 2) Reading
- 3) Understanding verbal instructions in
- classroom
  - Academic difficulties

# Background

• Poor performances in auditory processes

- 1) Sound localization
- 2) Temporal processing
- 3) Auditory discrimination
- 4) Auditory pattern recognition

# About the study

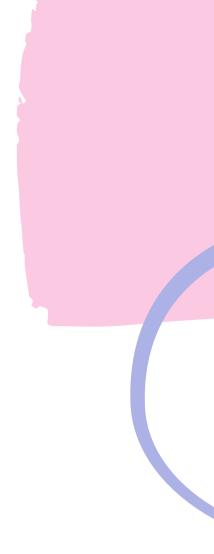
- Researches on APD in an Asian population is rare
- To examine the comorbid profile of children with APD who were referred for an APD assessment in NUH
  - Whether children with APD have other learning difficulties at the same time
    - Language impairment (LI) &
    - Specific reading disorders (SRD)

To evaluate the performances of these children with comorbidities in the APD test battery

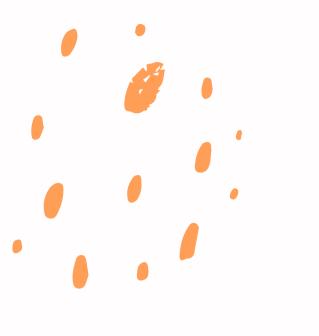


The APD test battery (5-8 tests)

- Dichotic Digit Test (DDT)
- Competing Sentence Test (CST)




- Duration Pattern Test (DPT)
- Random Gap Detection Test (RGDT)
- Gap in Noise (GiN)
- Masking Level Difference at 500Hz (MLD500)


\*Each test is testing different AP skills

### Speech tests

Non-speech tests



## Methods



- Retrospective study: medical records of children who completed an APD assessment in NUH between January 1, 2015 and December 31, 2019
- Retrieved information from an encrypted clinical patient log
- NUHS Research Office Centralized Trusted Third Party (CTTP) to assist the deidentification of encrypted data
- 373 subjects in total
  - Inclusion
    - (a) Age between 7 and 12 years old;
    - (b) Normal non-verbal intelligence;
    - (c) Have undergone a basic hearing test (pure tone audiometry) and tympanometry
      - 298 subjects
  - Exclusion

(a) Diagnosed with any developmental disorders other than LI/SRD, i.e. ASD, ADHD, GDD or other cognitive deficits; and (b) Did not undergo a complete test battery

• 245 subjects included in the analysis



Yes

- Failed the APD ax
- Clinically diagnosed with APD

No

- Passed the APD ax
- NOT clinically diagnosed with APD

### Deficit but not labelled

- Failed some tests in the APD test battery
- Deficits in certain AP skills but not sufficient to be granted APD clinically

## Results

## Among the 245 subjects...

### Yes

55 granted an APD diagnosis (APD population)

### No

98 of the subjects not granted an APD diagnosis



### Deficit but not labelled

92 of them were marked 'deficit but not labelled'

## Results



### Yes

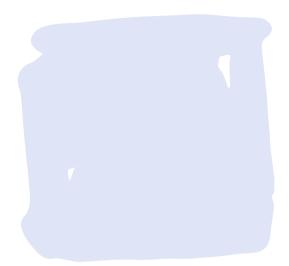

55 granted an APD diagnosis (APD population)

### No

98 of the subjects not granted an APD diagnosis

### Deficit but not labelled

92 of them were marked 'deficit but not labelled'




The APD population (n=55)

- 30 (~55%) had comorbid LI
- 7 (~13%) had comorbid SRD
- 3 (~5%) had comorbid SID
- 15 (~27%) had no comorbidity

\*Positive correlation between APD diagnosis and comorbid LI







### Performances of the APD population in each test in the APD test battery

### General results

- 1st most challenging: CST
  - All 55 (100%) showed either bilateral or unilateral deficit
- 2nd most challenging: DDT
  - 26 (~47%) showed either bilateral or unilateral deficit
- FPT (label), DPT and GiN: ~10 children in each test (~18%) showed either bilateral or monaural deficit
- MLD500: only 6 (~11%) showed either bilateral or monaural deficit
- RGDT: all obtained normal results

\*Children in the APD population showed more difficulties in speech tests than non-speech tests



## Discussion





secondary issue to LI/SRD

- Complexity and interconnection in human brain
  - AP, language processing & memory = highly
    - inseparable (Witton, 2010)
  - Deficits in language processing affect AP
  - True AP deficits?
  - Current results show that speech tests are the most challenging tests
- - Hypothesis: AP deficits in children with
    - comorbid LI/SRD are likely to be affected by
    - language processing/general cognitive deficit

APD label in children with comorbid LI/SRD is likely a



comorbidity

- developmental disorders tests than the children with comorbid LI • more common for children with true AP deficits to present some form of temporal resolution/temporal processing deficits
- AP skills are not affected by any general • Experience difficulties in speech tests • Experience more difficulties in non-speech

True AP deficits in those children with no



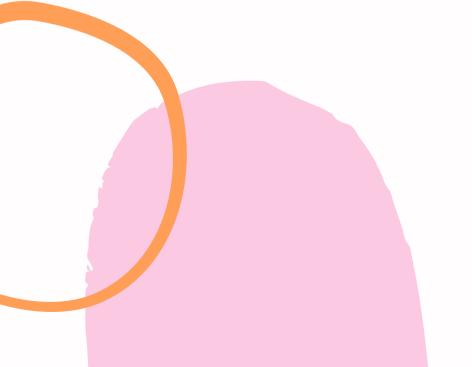


Multilingualism may possibly play a role in the children's performances in the APD assessment

- - & Buonomano, 2004)
- Good performances in FPT (label) and DPT tests
  - correlate (Goswami, 2018)
  - perception (Bao et al., 2013)
  - Tonal language (Bao et al., 2013)

• More than half of the APD population obtained normal results in DDT • Consistent with research findings: bilinguals perform better with higher accuracy in dichotic tests comparing to monolinguals (Mauk

• Strengthened efferent neural pathways and overall neural architecture of the brain due to bilingualism (Krizman et al., 2014)


• Not expected: language deficits and temporal processing deficits

• Language background can affect a person's temporal order

# Thank you

Acknowledgement: A/Prof Jenny Loo Ms. Maureen Ding Ms. Low Fang Yin All lecturers and staff members in NUS MSc Audiology My beloved family in Hong Kong My lovely batch mates





